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Abstract

For detecting exoplanets with high precision, using the angular distance between the two stars to detect the periodic
motion of the star will be a better choice. This approach can avoid importing the position error of the reference
catalog in the process that uses a traditional photographic plate to derive the star position suffers. At the precision
level of microarcseconds, the error caused by optical axis deviation is not negligible. In this paper, we evaluate the
impact of the stability of the optical axis on the relative angular distance measurement from the aspects of
theoretical analysis and numerical simulation. When the angular distance error limit of 1 microarcsecond is given,
the upper limit of optical axis deviation is estimated to be 68 milliarcsecond. In addition, when limiting the
deviation of the optical axis, we give the corresponding error allowance of angular distance measurement.
Moreover, we also discuss the way to resolve the problem of CCD distortion and focal length change on the
measurement of angular distance. The work in this paper is of guiding significance to the design of a telescope.

Key words: instrumentation: high angular resolution – methods: numerical – planets and satellites: detection

1. Introduction

In the past two decades, searching for exoplanet systems
and discovering habitable planets have been hot topics. During
this period, a series of detection approaches have been developed.
Two main detection approaches often mentioned in exoplanet
exploration are radial velocity and photometry (Perryman
2000). They have excellent performance in detecting exoplanets,
however, they cannot measure the complete orbital parameters
and the mass of exoplanets. The Search for Terrestrial Exo-Planet
(STEP; Malbet et al. 2012) and the Closeby Habitable Exoplanet
Survey (CHES; Jianghui & Wang 2020) employed an approach
of relative measurement. This approach combined with the
radial velocity and other technologies provides a complete
measurement of orbital parameters and mass of the exoplanets
that cannot be measured by using radial velocity or photometry
exclusively.

Utilizing astrometry to search for exoplanets is an emerging
technology and still in its infancy. The advantage is that it can
detect the periodic term of star motion caused by the effect of
gravity, thus it infers the existence of an exoplanet. For a solar-
like star which is 1 pc away from us and surrounded by a planet
with the Earth’s mass and the semimajor axis of the orbit being
1 au, the allowable measurement error of the position to detect
the existence of the planet is 1 μas (Malbet et al. 2012).

In photographic astrometry, the plate constant is obtained
from the position of reference stars in the prior catalog, which
is used to derive the position of the target star (Kovalevsky &
Seidelmann 2004). Positional error in the reference catalog is
imported during this process. So, a relative measurement

approach (Shu-yu et al. 2018) that measures the angular
distance between any reference star and the target star in the
field of view (FOV) to detect the periodic motion of the star
would be a better choice. It uses the angular distance as a new
position parameter. Through this approach, we can avoid the
error inherited from the star catalog.
The measurement precision of angular distance between star

pairs is limited by several factors. The first one is the
limitations of the optical system, including the precision and
distortion of the charge-coupled device (CCD; Jin et al. 2013).
The second one is the stability of the optical system, where the
main factor is stability of the optical axis.
In this paper, we aim to evaluate the impact of optical axis

deviation on the measurement of angular distance. We give an
introduction to the instruments in Section 2. In Section 3, we
perform a theoretical analysis on the impact of the deviation of
optical center position of the star and the measurement of
angular distance between the star pair. In Section 4, we present
the results of numerical simulations and the error distribution of
angular distance under different deviations. We set 1 μas as an
upper limit to evaluate the impact of the optical axis deviation
on the measurement of the target star position. We propose
solutions to reduce the impact of lens distortion and focal
length change on the measurement of angular distance in
Section 5. The summary is given in Section 6.

2. Instrument

CHES (Jianghui & Wang 2020) is a space satellite project
with high accuracy (∼1 μas) for exoplanet detection. It aims to
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directly detect and study Earth-like planets in the vicinity of the
solar system (within 10 pc) and achieve narrow-angle measure-
ment at the microsecond level. The aperture of the telescope
used is 1.2 m. The FOV is 0°.44× 0°.44 which meets the
observation requirements (at least three reference stars enter the
field angle of CHES). The optical structure is a coaxial
reflection type, with high imaging quality and low distortion,
and a three-mirror anastigmatic structure is used to increase the
field angle. The designed single measurement uncertainty is
better than 1 μas, and the observational uncertainty can be
improved by an order of magnitude if the number of repeated
observations reaches 50 times. Assuming that the reference star
is a distant single star and the target star is a close star, the
perturbation of the planet with respect to the target star can be
detected by small changes in the angular distances between the
reference stars and the target star with an accuracy of
microseconds.

3. Impact of the Optical Axis Deviation from
Theoretical Analysis

In this section, we illustrate how the deviation of optical
center position impacts the measurement of angular distance of
the star pair. First, we define the direction in which the optical
axis of the telescope should point. To reduce the variation of
the FOV caused by the different pointings of each observation,
it is suggested that the optical axis should be pointed at the
middle position of the target star’s proper motion on the
celestial sphere during the observation period. But in this
section, we do not restrict the optical axis to the target star,
which means that we do not restrict one of the stars to be near
the center of light. We analyze the impact of the optical axis
deviation on the angular distance between star pairs at any
position in the FOV.

Based on the projection theorem, there is a nonlinear
relationship between the position of the star on the CCD and
that on the celestial sphere. This relationship depends on the
projected point which is determined by the optical axis, which
means that even a tiny change in the direction of the optical
axis will cause a nonlinear change in the position of the star on
the CCD. This corresponding relation is illustrated in Figure 1.
Stars at different locations on the CCD are affected differently
by the deviation of the optical axis, so the angular distance
change between star pairs is nonlinear. Suppose that the optical
axis is not completely stable, and the angular distance
measurement will be biased, which in turns affects the
measurement of the periodic motion of the target star and the
detection of exoplanets.

3.1. Effect on the Position of a Star

As diagrammed in Figure 2(a), point O is the original center
of the FOV and point O’ is the new center of the FOV due to
deviation of the optical center. Point A is a star in the FOV.

For the spherical triangle OO’A, we have

r r q q¢ = D + D - Dr r rcos cos cos sin sin cos , 1( ) ( )

q q
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where r and ¢r are the distances between the reference star and
the optical center, θ and q¢ the angle between the target star and
the latitude line, and Δρ and Δθ the distance and direction of
the new optical center with respect to the old one respectively.

Figure 1. The relationship between the deviation of the optical center and
changes in the projected point and star position on the focal plane. In the left
panel, point A is a star on the celestial sphere, and point O and point O′ are the
positions of the optical center before and after the optical axis deviation
respectively. In the right panel, point Af is the star position on the focal plane
and point ¢Af is the new position on the focal plane due to the optical axis
deviation. Point Of is the center of the focal plane.

Figure 2. Schematic diagram of the effect of deviation of the optical center
position on the celestial sphere. The left panel (a) is the general situation and
the right panel (b) is the situation such that the star is at the center of the FOV.
Point A is the position of the star. r and ¢r are the distances between the
reference star and the optical center. θ and q¢ are the angle between the target
star and the latitude line. The points O and O’ are the positions of the optical
center before and after deviation respectively. Δρ and Δθ are the distance and
direction resulting from deviation of the optical center position respectively.

2

Research in Astronomy and Astrophysics, 22:025008 (6pp), 2022 February Tan et al.



Because the FOV is small (0°.44) and the deviation of optical
center position is on the order of milliarcseconds, the two axes
in Figure 2 are considered parallel and we can use the small
spherical triangle approximation

q b q¢ = = + p. 3( )

For star A at the center O of the FOV, we can get the new
position of the star from Figure 2(b). When there is a deviation
in the optical center position, the new coordinate ¢r is equal to
the value of deviation of the optical center and the new
coordinate q¢ is the angle in the direction opposite to the
deviation angle,

r¢ = Dr , 4( )
q q p¢ = D + . 5( )

In the focal plane, the coordinate is (rf, θf) and the
transformation is

= ¢r rtan , 6f ( )
q q= ¢. 7f ( )

3.2. Effect on Angular Distance

For two stars in the FOV, the angular distance l on the focal
plane can be written as
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where r1, r2, θ1, θ2 are the coordinates of the two stars in polar
coordinates. When the optical center position has a slight
deviation due to a change in the projected point, the position of
the two stars on the focal plane will also be changed. We define
D = ¢ -l l l∣ ∣ as the change caused by the deviation of the
optical center position.
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where ¢l is the new angular distance and q q¢ ¢ ¢ ¢r r, , ,1 2 1 2 are the
new coordinates, and Δρ and Δθ are the distance and direction
of the deviation of the optical center position respectively. The
angular distance change (Δl) caused by the deviation of the
optical center position can be determined by the following
formula,
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where the terms can be derived from Equations (1)–(9).
Equations (10)–(12) can be used to calculate the angular

distance change (Δl) according to the initial position of two
stars (r1, r2, θ1, θ2) and the distance and direction of the
deviation of the optical center position (Δρ, Δθ). For any two
stars, the impact of the deviation of the optical center on the
angular distance change is different at every deviation angle.
Since two stars can be located at any position in the FOV, and
the deviation angle of the optical center position can also be in
any direction, we only consider the range of deviation (Δρ).
When the angular distance change is limited, the minimum
value of all distances of the deviation corresponding to the star
pairs at all positions under all deviation angles is taken as the
upper limit of the allowable range of deviation. Because Δl has
six variables (r1, r2, θ1, θ2, Δρ, Δθ), it is complicated to find
the upper limit of the allowable range of deviation by
Equation (10), so we rely on numerical simulation to find the
upper limit.

4. Impact of the Optical Axis Deviation from
Numerical Simulation

In this section, we present the results of numerical
simulation in two parts. First, we limit the angular distance
change between any two stars in the FOV to be less than
1 μas to find the upper limit on the allowable range of
deviation. Second, we limit the deviation of optical center
position and simulate the distribution of angular distance
change under different deviations.

4.1. Finding the Upper Limit on Optical Center
Deviation

We set an FOV so that the radius is 0°.22 and the maximal
distance difference g= 1 μas. We aim to find an upper limit
rD max such that if the deviation of optical center position is

smaller than it, Δl will not exceed 1 μas. The procedures are
outlined below.

1. Choose any two points in the FOV as the star pair, and
calculate the distance l.

2. Simulate the deviation of optical center position at different
angles and distances. According to Equations (1)–(7),
calculate the new coordinates of two stars due to the
deviation.

3. Calculate the new distance ¢l by the new coordinates and
the angular distance change Δl between l and ¢l .
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4. Change the angle and increase the distance for the
deviation of optical center position and repeat steps
(2) and (3) until the angular distance change Δl reaches
the given value g. Record the maximum distance of the
deviation at the deviation angle.

5. Choose minimum permitted deviation distance of every
angle to be the upper limit of the deviation of optical
center position for this star pair.

6. Traverse the entire FOV to simulate the two stars
anywhere in the considered area. Repeat the above steps
and get the corresponding value. Choose minimal
permitted deviation distance of every star pair to be the
upper limit rD max of the deviation of optical center
position for the given value g.

Figure 3 shows that when we limit the angular distance
change to 1 μas, the upper limit of the deviation of optical
center position in numerical simulation is about 68 mas. In
other words, we give such an upper limit, and as long as the
deviation of optical center position does not exceed this upper
limit, the angular distance will not change more than 1 μas, no
matter where the two stars are in the FOV.

According to the numerical simulation, we found that the
angular distance is most affected by deviation of the optical
center when the two stars are located at the optical center and
the edge of the FOV respectively, and the direction of deviation
is on the line between the two stars. Substituting this condition
into Equations (10)–(12), we can obtain the formula: ∂Δl/
∂Δρ= 1/67.8 (μas/mas), which is consistent with the
simulation result in Figure 3.

In short, for the detection of exoplanets, when the
deviation of optical center position is less than 68 mas and
the change of angular distance caused by other factors is not
considered, the measurement precision of the position can be
higher than 1 μas.

4.2. Distribution of Angular Distance Change in
Observations

When observing a star, there are generally more than eight
reference stars in the FOV (Malbet et al. 2012). The deviation
of optical center position will cause offsets to all the nine star
positions, resulting in the change of angular distances between
star pairs. We took the average of eight pairs of angular
distance changes as the impact of the deviation of optical center

position, D = å ¢ -l l l
1

8
d i i∣ ∣. For real observations, the dis-

tance between the optical center and the target star is generally
within a few arcseconds. The simulation in this paper assumes
that the distance between the optical center and the star is
within 1″, and there are eight reference stars in the FOV, which
are randomly distributed. We simulated the change in angular
distance for a given deviation of optical center position and a
random deviation angle. Figure 4 displays the distribution of
the angular distance change when the deviation of optical
center position reaches the set values.
For the real observation, the angular distance change is not

only caused by stability of the optical axis, but also due to
accuracy of the CCD, optical distortion and other factors that
will also affect the angular distance. So the allowable angular
distance change caused by the deviation in optical center
position should be less than 1 μas. Meanwhile, the actual
deviation value is generally less than the set deviation value.
Therefore, the distribution of angular distance change will
move toward the smaller end.
We took the allowable angular distance changes of 0.3, 0.4

and 0.5 μas as examples and give the ratio of the angular
distance changes exceeding the allowable value under different
deviations of optical center position in Table 1. We found that
as the deviation in optical center position increases, the ratio of
the angular distance change exceeding allowable value
increases rapidly. According to the actual condition, we can
select an appropriate allowable upper limit on the deviation in
optical center position, which can ensure that the final angular
distance change is no more than 1 μas.

5. Discussion

In addition to the stability of the optical axis, the instrument
and optical system will also affect measurement accuracy. For a
CCD, the use of micropixel technology is required to achieve
the 10−5 pixel precision level. For the lens distortion and focal
length change, we also propose the following solution to
reduce the impacts.

5.1. Reduce the Variation in Distortion

For an optical system, distortion is inevitable and the effect
of distortion is not the same at different positions in the FOV
(Jin et al. 2013). Due to the space position and attitude of the
telescope and the proper motions of the reference stars, the

Figure 3. Linear relationship between the deviation of the optical center
position and the angular distance change by numerical simulation.
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distribution of reference stars in the FOV will change when
observing a target star at different epochs. This position change
will cause the image of the reference star to be affected by
different distortion effects when passing through the optical
system. It will impact the accuracy of the reference star position
on the CCD, and eventually lead to an error in angular distance
measurement. By mechanical alignment, the impact of space
position and attitude change can be avoided, which makes the
FOV consistent for each observation. For the impact caused by
the reference star’s proper motion, we propose that further
rotation adjustment of the FOV along the optical axis can be
taken to make the position change of all the reference stars in

the FOV be reduced in an average sense and reduce impact of
the distortion change. We took the following approach to
evaluate the effectiveness of reducing this impact.
The impact of the distortion change on the position

measurement can be expressed by I,

=
å - ¢

å

s s
I

f

f
, 13i

n
i i i

i
n

i

∣ ∣
( )

where I is the weighted average of the change in location of the
reference stars, n the number of reference stars in the FOV, si
and ¢si the location of the reference stars in the FOV at the first
and current observation respectively, and fi the weight.
The relation between the distortion (D) of the optical system

and the field angle (θ) is D(θ)= k1θ
3+ k2θ

5 (Jin et al. 2013), so
we approximate the weight fi as the third power of the distance
change, = - ¢s sfi i i
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We then define the reduction rate = ¢ -R 100%I I

I
· , which

represents the impact of the distortion changes before (I) and
after ( ¢I ) rotation. This can be used to evaluate the effectiveness
of rotation.

Figure 4. Distribution of the angular distance change with the deviation of optical center position at (a) 40 mas, (b) 60 mas, (c) 80 mas and (d) 100 mas. The red
curves in the figure are the cumulative distribution functions. The number of simulations is 100 k.

Table 1
Ratio of the Angular Distance Change Exceeding 0.3, 0.4 and 0.5 μas Under

Different Deviations of Optical Center Position

Deviation Δρ (mas) Ratio

>0.3 (μas) >0.4 (μas) >0.5 (μas)

40 0.2% 0.0% 0.0%
60 8.3% 0.7% 0.0%
80 30.1% 7.8% 1.2%
100 52.6% 24.1% 7.8%
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We selected 50 target stars and a total of 1712 reference stars
from a target star list (H.-G. Liu 2015, Private Communica-
tion). The average displacement for these reference stars in five
years is 56 mas and 90% of the displacements are less than
171 mas. The larger the proper motion of the reference star is,
the more it will be affected by non-uniformity and the more the
distortion of the optical system will be.

For 50 groups of reference stars, through rotation of the FOV
along the optical axis, the cumulative distribution function of
the reduction rate of the impact of the distortion changes is
plotted in Figure 5. The average reduction rate is about 22%.
The rotation angle is on the arcsecond scale, with an average of
44 7. The effectiveness of rotation is mainly related to the
direction of proper motion, but shows weak dependency on the
number and proper motion value of reference stars.

5.2. Monitoring the Change in Focal Length

During the installation of the lens and the operation of the
telescope in space, external factors such as temperature will
lead to deformation of the lens, which will impact the focal
length of the lens. This will cause the star image to defocus on
the CCD, resulting in inaccurate location and error in the
angular distance measurement.

A collimation system can be added to the telescope to
monitor this deviation. The laser irradiates the mirror and the

reflected laser irradiates the CCD. If the focal length changes,
the image of the laser on the CCD will be defocused, so it can
be used to monitor whether the focal length changes.

6. Summary

In this paper, we study the impact of the deviation of optical
center position on the angular distance of star pairs. We
performed a theoretical analysis of the position of a star on the
CCD impacted by the deviation of optical center position and
derived the impact on the angular distance between two stars.
We discuss the impact from two aspects through numerical
simulation.
First, when we limit the distance change between the two

stars at any position in the FOV to be less than 1 μas, the upper
limit of the deviation of optical center position is about 68 mas.
Second, we limit the value of the deviation of optical center
position and simulate the angular distance change between the
target star and the reference star at the deviation of 40 mas,
60 mas, 80 mas and 100 mas. The proportions with angular
distance change exceeding 0.3, 0.4 and 0.5 μas are given as
reference.
We also consider other factors that may affect the

measurement and give solutions to reduce them. For lens
distortion, the telescope can be rotated along the axis to reduce
the impact of distortion change. For the change of focal length,
a collimating laser can be used to monitor this change.
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